• 文章标签
  • 0
  • 原文摘要
  • Titin /ˈtaɪtɪn/, also known as connectin, is a protein that, in humans, is encoded by the TTN gene.[3][4] Titin is a giant protein, greater than 1 µm in length,[5] that functions as a molecular spring which is responsible for the passive elasticity of muscle. It is composed of 244 individually folded protein domains connected by unstructured peptide sequences.[6] These domains unfold when the protein is stretched and refold when the tension is removed.[7] Titin is important in the contraction of striated muscle tissues. It connects the Z line to the M line in the sarcomere. The protein contributes to force transmission at the Z line and resting tension in the I band region.[8] It limits the range of motion of the sarcomere in tension, thus contributing to the passive stiffness of muscle. Variations in the sequence of titin between different types of muscle (e.g., cardiac or skeletal) have been correlated with differences in the mechanical properties of these muscles.[3][9] Titin is the third most abundant protein in muscle (after myosin and actin), and an adult human contains approximately 0.5 kg of titin.[10] With its length of ~27,000 to ~33,000 amino acids (depending on the splice isoform), titin is the largest known protein.[11] Furthermore, the gene for titin contains the largest number of exons (363) discovered in any single gene,[12] as well as the longest single exon (17,106 bp).
  • 用户摘录
    • tomqiao99 · 05月12日 09:14
    • Titin /ˈtaɪtɪn/, also known as connectin, is a protein that, in humans, is encoded by the TTN gene.[3][4] Titin is a giant protein, greater than 1 µm in length,[5] that functions as a molecular spring which is responsible for the passive elasticity of muscle. It is composed of 244 individually folded protein domains connected by unstructured peptide sequences.[6] These domains unfold when the protein is stretched and refold when the tension is removed.[7] Titin is important in the contraction of striated muscle tissues. It connects the Z line to the M line in the sarcomere. The protein contributes to force transmission at the Z line and resting tension in the I band region.[8] It limits the range of motion of the sarcomere in tension, thus contributing to the passive stiffness of muscle. Variations in the sequence of titin between different types of muscle (e.g., cardiac or skeletal) have been correlated with differences in the mechanical properties of these muscles.[3][9] Titin is the third most abundant protein in muscle (after myosin and actin), and an adult human contains approximately 0.5 kg of titin.[10] With its length of ~27,000 to ~33,000 amino acids (depending on the splice isoform), titin is the largest known protein.[11] Furthermore, the gene for titin contains the largest number of exons (363) discovered in any single gene,[12] as well as the longest single exon (17,106 bp).